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Abstract—Sensor faults continue to be a major hurdle for sys-
tems health management to reach its full potential. At the same
time, few recorded instances of sensor faults exist. It is equally dif-
ficult to seed particular sensor faults. Therefore, research is un-
derway to better understand the different fault modes seen in sen-
sors and to model the faults. The fault models can then be used
in simulated sensor fault scenarios to ensure that algorithms can
distinguish between sensor faults and system faults. The paper il-
lustrates the work with data collected from an electromechanical
actuator in an aerospace setting, equipped with temperature, vi-
bration, current, and position sensors. The most common sensor
faults, such as bias, drift, scaling, and dropout were simulated and
injected into the experimental data, with the goal of making these
simulations as realistic as feasible. A neural network-based classi-
fier was then created and tested on both experimental data and the
more challenging randomized data sequences. Additional studies
were also conducted to determine sensitivity of detection and dis-
ambiguation efficacy with respect to severity of fault conditions.

Index Terms—Fault diagnosis, modeling, transducers.

I. INTRODUCTION

S ENSORS play a central role in realizing the full benefits of
cost and performance in modern aerospace systems. The

degree of autonomy of these systems is highly correlated with
the number of sensors used in them. Features like guaranteed
uptime also mandate continuous state analysis with a respective
increase in use of sensors.

However, as such systems have become more reliable as a
whole, sensors have attained the reputation as being the “weak
link.” Indeed, sensor failures have been responsible for highly
publicized system breakdowns such as aborted takeoffs of the
space shuttle. For that reason, particularly for those systems
that require very high overall reliability combined with the
need to keep weight low, there is a reluctance to add more
sensors. Where sensors are used, they are configured with up
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to quadruple redundancy in order to be able to deal with sensor
failure—which, as in the cited case, may not prevent operational
disruption (depending also on the fault handling logic). This,
in contrast to the general trend of increasing system sophisti-
cation, has hamstrung the proliferation of health management
systems and, consequently, their potential technical advances.

In addition to increased weight, redundant sensors are not
always feasible due to considerations of cost, space constraints,
electrical/power constraints, and increased complexity. Any
new sensor has to “work its way on-board”.

It is, therefore, critical to have an understanding of how sen-
sors fail in order to mitigate the effects of their off-nominal be-
havior. While sensor fault detection and diagnosis are well ad-
dressed in the literature, there is no consensus on classification
and nomenclature for sensor faults. Equally sparse are research
efforts on characterization of the various classes of sensor faults
and efforts to develop realistic fault models. Such models would
allow simulation of sensor fault effects and their impact on the
systems they are used in. They would also allow the study of
sensor suit development; testing of fault detection, isolation, and
recovery algorithms; and assessment of prognostic algorithm
performance.

This paper starts with classifying and summarizing fault
modes for the most common sensor types used in the aerospace
industry. A brief overview of state-of-the-art diagnostic tech-
niques for sensor faults is then provided. The discussion then
shifts to describing experiments conducted by the team in
simulating and diagnosing sensor faults. Finally, results of the
study are discussed and plans for future work outlined.

II. SENSOR FAULT MODES

Success of any health monitoring system depends heavily
on reliability of employed sensors. In abstraction, a sensor
fault may be defined as an unexpected deviation in the ob-
served signal output in the absence of any anomalous condition
in the system under test. Sensor faults occur due to various
reasons, such as manufacturing inefficiencies, wear and tear
with long-term usage, incorrect calibration, or mishandling.
That often results in some physical deviation from design
specifications within the sensor body, which in turn leads to
unexpected outputs. From a fault-tolerant control systems
point of view, it is usually sufficient to identify the erroneous
behavior of a sensor such that no unintended feedback is sent
to the controller. System health monitoring is more concerned
with the type of deviation observed from the normal expected
output, irrespective of the actual physical damage that causes
it. However, given the central role that sensor faults play in
advancing system health management, it is imperative to have
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a good understanding of the various failure mechanisms within
the sensors. Mapping failure mechanisms to resulting behaviors
is critical to properly model sensor faults.

One can establish five basic behavioral categories for sensor
faults.

Bias: A constant offset from the nominal sensor signal sta-
tistics. Another way to describe bias is as the sensor output at
zero input. Bias can occur due to incorrect calibration or phys-
ical changes in the sensor system. The governing equation is

, where is the constant offset value. A
time variant results in drift failures.

Drift: A time-varying offset from the nominal statistics of the
sensor signal. Generally, only linear drifts have been modeled in
the literature. However, a nonlinear drift may be possible. Drift
failures may be represented as , where

is the time-varying offset factor.
Scaling (or Gain Failure): Magnitudes are scaled by a factor

, where the form of the waveform itself does not change [1].
Scaling can be represented by , where

is a scaling constant that may be time-varying.
Noise: A random time series is observed. For analytical sim-

plicity, it is usually assumed that the noise is zero-mean unless
some information is available otherwise. It may be represented
as .

Hard Fault: The sensor output is stuck at a particular level
expressed by , where is a constant. In general
there are two subcategories for hard failures.

1) Loss of Signal: represents the complete loss of sensor data
where the output from the sensor is zero [1].

2) Stuck Sensor: represents the situation where sensor output
is stuck at a constant value.

Intermittents: Deviations from normal readings appear and
disappear several times from the sensor signal. The frequency of
such signatures is generally random. Intermittents can appear in
any of the failure modes described above. Due to their random
nature, they are the most difficult to track, identify, and account
for in diagnostics algorithms.

Other categorizations exist—for example, one that rates the
quality of the sensor faults [2]. In particular, tame faults, are fault
signals that are both close to nominal signal range and somehow
correlated to it [1]. Faults such as bias and drift may fall into this
category. Additive faults (like bias and drift) have been also clas-
sified into deterministic (constant offset) or semi-deterministic
(offsets jump at random intervals and with random amplitudes)
[3].

III. SENSED PHENOMENA

To be able to better model sensor faults, it is important
to have an insight into the basic operating principles of the
common sensors and the most common fault mechanisms. The
phenomena discussed here include only those of most interest
to aerospace systems, i.e., the ones encountered in temperature,
acceleration, pressure, strain, force, load, current, and position
measurements. Several other types of sensors commonly used
in aerospace applications, such as attitude, direction, radiation,
flow, and others, are left for future studies.

Measurements done by a sensor rely on a particular physical
property or behavior of materials. With a suitable infrastructure,

Fig. 1. Thermocouple with external reference junction [6].

these properties can be used to sense/measure several distinct
phenomena. For instance, a resistance strain gage can be used
to measure strain, stress, loads, or pressure, depending on the
application. The mechanism of a particular type of fault and
its frequency depends, of course, on the physical design of the
sensor. The sensor mechanisms covered and their corresponding
uses (in italics) are as follows.

1) Thermocouples: temperature.
2) Resistance temperature detectors (RTDs): temperature
3) Piezoelectric: acceleration, vibrations, pressure, strain,

force
4) Piezoresistive: strain, force, pressure, acceleration
5) Resistive strain: strain, force, pressure
6) Hall effect: current, linear displacement
7) Magnetostrictive effects: linear displacement
8) LVDT: linear displacement, acceleration
This list is certainly not complete, but is representative of the

more commonly used sensors. Finally, it needs to be mentioned
that while the root causes of a sensor fault can be either a failure
of the sensing mechanism itself or of the electrical system in-
terpreting the data, only the former cases are discussed in this
paper.

A. Thermocouples

Thermoelectric electromagnetic force (EMF) is created in
the presence of a temperature difference between two different
metals or semiconductors. Thermocouples use this phenom-
enon, called the Seebeck effect [4], to detect the temperature
difference between two sources. A thermocouple circuit con-
sists of two metals, e.g. copper and constantan, with two
junctions at temperature (test junction) and as reference
temperature (Fig. 1). Thermocouples have the widest temper-
ature range of all sensor technologies, to over 2000 C,
and can be used in a wide variety of environments [5].

Faults in Thermocouples:
1) Degradation, corrosion or breakage of junction leading to

bias, scaling, intermittent and/or complete failure [6].
2) Inhomogeneous changes in composition of the material

taking place due to long exposures to high temperatures,
resulting in thermoelectric drift [7], [8].

3) When a thermocouple is bonded to a test surface, degrada-
tion of this bond may lead to the junction being at a lower
temperature than the body, thus causing a bias.

4) A short (or degradation) in the lead wires can lead to com-
plete failure, bias, or drift [4].
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Fig. 2. A standard platinum resistance thermometer [5].

5) Change in the reference temperature leading to bias [6].
6) Change in the thickness of the conducting leads causing a

change in resistance, leading to a scaling error.

B. Resistance Temperature Detectors (RTDs)

In an RTD, resistance increases with rise in temperature [4]
due to the positive temperature coefficient of electrical resis-
tance of metals. Precision RTDs consist of a thin insulated plat-
inum wire encapsulated in a ceramic or metallic casing (Fig. 2).
These casings are then immersed into the fluid or bonded to the
surface for temperature measurement. Their normal operation
range is roughly C to 650 C. In this range they are
both more accurate and have more linear characteristics than
thermocouples [4]. No reference temperature is needed for the
RTDs, but they have to be calibrated carefully at a particular
temperature.

Faults in RTDs:
1) Overtime exposure to high temperatures can cause a drift

in the values of the RTD to several degrees per year [4].
2) A current passing through the RTD causes self heating of

the element that can lead to a bias in the readings [4], [9].
3) Thin-film RTDs experience change in resistance due to sur-

face stresses, which can lead to a bias in the readings.
4) Shock and vibration put strain on resistive wire and change

its characteristics, leading to drift [4].
5) Degradation of insulation can cause a short between the

coils and result in a lower resistance reading, leading to
bias [4].

C. Piezoelectric Sensors

Piezoelectricity is the ability of some materials (certain crys-
tals and ceramics) to generate an electric potential in response
to applied mechanical stress. A typical piezoelectric sensor con-
sists of a piezoelectric crystal which is bonded to the surface of
interest. Electrodes are connected to the either end of the crystal
to sense the electric potential (charge), which can then be related
to the stress experienced by the crystal—using piezoelectric and
stress coupled equations (Fig. 3). They have a wide frequency
range, from 0.01 Hz to 1 MHz [5], and temperature range from

C to C.
Depending on the type of stress applied, a piezoelectric

crystal can be used for sensing the following properties [4].
1) Accelerations, from the stress induced in the piezoelectric

crystal by a seismic mass (compression, flexure, or shear
modes).

2) Vibrations, when mounted directly onto a surface.
3) Strain, when a thin piezoelectric crystal is bonded to a

surface.

Fig. 3. Piezoelectric accelerometer in compression mode [5].

4) Pressure, either sensed directly by a piezoelectric disk
(for high pressure applications) or via strains induced in
a diaphragm.

5) Forces, by transmitting them directly through the crystal.
Faults in Piezoelectric Sensors:

1) Debonding due to degradation of the interface between
the piezoelectric crystal and the substrate (or the seismic
mass) over time can lead to either lower stresses being
transferred between them resulting in a scaling error (scale

) or a change in the frequency response of the
crystal, which may, in turn, affect high-frequency behavior
of the sensor [10].

2) Cracking of the crystal due to fatigue or shock causes
scaling of the outputs from the sensor or a frequency shift
of the sensor [11].

3) Depolarization of the crystal takes place if the crystal is
subjected to temperatures above the operating range, even
for a small time, that can result in a partial or complete loss
of sensing capabilities [12].

4) Electric or mechanical fatigue of the crystal over time
causes loss of polarization of the crystal, leading to scaling
errors in the sensor [12].

5) Loss of contact between the crystal and the lead wires over
time due to fatigue or shock can lead to intermittent or
complete failure.

6) Temperature variations can lead to a change in the electro-
mechanical properties of the crystals, resulting in bias or
drift.

D. Piezoresistive Sensors

The piezoresistive effect is the change in electrical resistance
of a material due to applied mechanical stress (which is different
from the change in resistance due to dimensional changes, as
in a strain gage). Ceramics (or semiconductors) are typically
used as the sensing materials as they have high gage factors
(Fig. 4). Piezoresistive sensors can be used in static applica-
tions and moderately high frequencies up to 2500 Hz [4] and
in thermal environments as high as 540 C [5]. Their operating
range is up to 25 G and they can withstand shocks of up to
2000 G [9]. The principles of operation of piezoresistive sen-
sors are the same as that of piezoelectric sensors, with the differ-
ence in the frequency range and shock characteristics. Piezore-
sistive sensors can be configured in the same ways as piezoelec-
tric ones—to sense accelerations, forces, strains, pressures, and
low-frequency vibrations.
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Fig. 4. An absolute pressure sensor with a hermetically sealed vacuum refer-
ence chamber on one side of the sensing element [5].

Fig. 5. A typical foil strain gage [13].

Faults in Piezoresistive Sensors:
1) Debonding of the interface between the piezoresistive ele-

ment and the substrate can lead to a lower degree of stresses
transfer to the piezoresistive element, which in turn can
lead to a scaling error.

2) Cracking of the piezoresistive element due to excessive fa-
tigue or shock can lead to a scaling error and, in extreme
cases, a complete failure.

3) Loss of contact between the element and the lead wires or
electrodes can lead to intermittent or complete failure of
the sensor.

4) Temperature variations can lead to a change in the electro-
mechanical properties of the element, leading to bias in the
readings.

E. Resistive Strain Gage

Resistive strain gages rely upon the change in the resistance
due to the dimensional changes in the material (as opposed
to change in material characteristics for piezoresistive mate-
rials) [9]. These gages consist of a grid of very fine wire or
foil bonded to a backing (Fig. 5). The electrical resistance of
the grid varies linearly with strain. Strain gages are good for
detecting local strains, but have lower gage factors than the
piezoresistive gages, which is compensated for by making them
larger in size. They can generally be used only in applications
which are static or have low vibration frequencies. Strain gages
are also used in load cells or pressure transducers by measuring
the stresses in the diaphragm, and in some cases, for measuring
temperatures [5].

Faults in Strain Gages:
1) Gaps in the bonding layer between the strain gage and the

substrate lead to either bias or scaling error, depending
on the nature of the void. Debonding of the gage will re-
sult in the same faults. This is of critical importance since
the bond area in a strain gage is much larger than that in
piezoresistive or piezoelectric sensors [6].

Fig. 6. (a) Hall effect in a conductor. (b) Hall effect current sensor [4].

2) Fatigue of the wire or foil can lead to cracks, causing either
bias or scaling (change of gage factor) fault. In extreme
cases, complete failure may occur [13].

3) Temperature variations between the loaded and the temper-
ature-compensated strain gage can lead to bias [13].

4) Loss of contact between the lead wires and the tabs on the
strain gage leads to intermittent or complete failure of the
sensor.

F. Hall Effect Sensors

A voltage potential , called Hall voltage, appears across a
conductor when a magnetic field is applied at right angles to the
current flow. Its direction is perpendicular to both the magnetic
field and the current and its magnitude is proportional to both
the magnetic flux density and the current (see Fig. 6).

The magnetic field causes a gradient of carrier concentration
across the conductor. A larger number of carriers on one side
of the conductor, compared to the other side, causes a voltage
potential , [4]. Typically, a ferrite crystal around a current
carrying conductor is used to concentrate the magnetic field of
the current, around a sensor. A bias current is then applied to
the sensor and Hall voltage measured, which is proportional to
the current in the main conductor. A Hall effect displacement
sensor can utilizes a Hall sensor and a movable magnet, with an
output proportional to the distance between the two.

Faults in Hall Effect Sensors:
1) Flaws in the core, such as degradation (corrosion, cracks),

residual magnetic fields, or core breakage can result in a
bias.

2) Changes in the bias current through the sensor can result
in bias or scaling.

3) Temperature variations can change the magnetic properties
of the ferrite core, resulting in decrease (or increase) of the
induced magnetization, causing a bias in the readings.

4) Changes in the orientation of the induced magnetic field in
the sensor (due to mechanical shocks or other reasons) can
change the value of Hall voltage and lead to a scaling error.

G. Magnetostrictive Sensor

Ferromagnetic materials such as iron and nickel display the
property of magnetostriction, where application of a magnetic
field causes a strain in the crystal structure, resulting in a change
in size and shape of the material [4]. To measure displacement,
a moving magnet forms the “target,” marking the position. The
magnet’s field, acting on a magnetostrictive wire, creates an ul-
trasonic pulse in the wire when a current pulse is passed through
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Fig. 7. Magnetostrictive principle for displacement measurement [14].

Fig. 8. Construction of an LVDT [4].

the wire. The time interval from the current pulse to the detec-
tion of the ultrasonic pulse at the end of the wire is used to de-
termine the position of the magnet along the wire (Fig. 7) [9].

Faults in Magnetostrictive Sensors:
1) Changes in temperature cause a change in the velocity of

propagation of sound through the magnetostrictive wire,
which can lead to bias. Temperature also changes the mag-
netostrictive properties of materials, resulting in bias [15].

2) Degradation (corrosion) of the ferromagnetic wire can lead
to changes in the magnetostrictive and ultrasonic proper-
ties, resulting in bias.

3) Loss of contact at the receiving end for the strain pulses
can result in intermittent or complete failure.

4) Stray magnetic fields (particularly strong fields) can cause
a random error in readings or result in excessive noise.

H. Linear Variable Differential Transformer (LVDT)

An LVDT is a position-to-electrical sensor whose output is
proportional to the position of a movable magnetic core. The
core moves linearly inside a transformer consisting of a central
primary coil and two outer secondary coils wound on a cylin-
drical form (Fig. 8). The secondary windings are wound out
of phase with each other. Moving the core results in a differ-
ential voltage between secondary coils, which varies linearly
with the core’s position [5]. The LVDT can be coupled with a
spring-mass system to detect the displacement of the spring and
measure acceleration or force [4].

Faults in LVDTs:
1) Short in one of the coils can lead to either a bias or complete

failure of the sensor.

TABLE I
TYPICAL RANGES FOR SENSOR FAILURE VALUES AS

AVAILABLE FROM THE LITERATURE

2) Leakage of magnetic fields between the secondary coils
can lead to a bias [5].

3) Changes in the primary voltage lead to a smaller induced
voltage in the secondary, leading to a scaling error.

Table I summarizes the range and median values for the
different fault classes found in the literature. It is hoped that
this will provide an aid in modeling sensor faults with realistic
magnitudes when superimposed onto real data. It will also
allow simulation of diverse sets of sensor faults and subsequent
training of algorithms to detect and distinguish them from
system component faults. The number of references in litera-
ture showing actual sensor faults is found to be very limited;
hence we list these statistics for a range of different sensors.

IV. SENSOR FAULT DETECTION AND

IDENTIFICATION (FDI) TECHNIQUES

The problem of fault detection and disambiguation has been
approached from various angles in the past three decades. A
wide variety of techniques have been reported; they can, how-
ever, be categorized into four basic categories. The emphasis on
each of these categories has changed with time and all come
with their own strengths and shortcomings. A brief overview of
the approaches is presented next.

Most of the early work has focused on model-based sensor
fault detection and disambiguation methods which, in general,
require mathematical models of the system under investigation
and utilize analytical redundancy generated by these models
[3], [21]. The majority of model-based approaches first compare
the observed sensor output and parameter estimates obtained
from the model to compute residuals. There are few distinct
categories for such approaches [22]. Parity methods compute a
residual vector that is zero when no fault is present and nonzero
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otherwise. The various parity approaches include Parity Space
Approach (PSA) [23], Parity Equation Approach (PEA) [24],
Generalized Likelihood Ratio Test (GLT), and Least Square
Residual Approach (LSRA). Another approach is based on
Bank of Observers (state estimators) that offer to cancel out the
contribution of noise and model inaccuracies [25]–[27]. State
estimation approaches based on Kalman filters generate an
estimate that can be used to compute residuals by comparing it
with measured states [28], [29]. Other model-based approaches
include fault detection filters [3] and parameter identification
[30] which model various faults and track corresponding model
parameters. As it is often the case, performance of analytic
redundancy-based FDI techniques is limited by modeling
uncertainties.

In the recent years, a notable emphasis has been placed on
data-driven methods as well, where signal processing and artifi-
cial intelligence techniques are combined. Such techniques are
especially important in situations where the complexity of the
system makes it difficult to model. Data-driven methods are rel-
atively simpler and quicker to implement than the model-based
ones. Features are computed using standard statistical estimates
or utilizing specialized domain knowledge [31], [32]. Various
machine learning approaches, like artificial neural networks
(ANNs), are very popular in the literature. Furthermore, ap-
proaches based on expert systems, where historical data is used
to construct a set of rules to diagnose system and sensor faults,
have also been used. Hybrid methods have been developed to
complement various individual techniques. For instance, in [24]
authors propose a hybrid method that combines Parity Equa-
tion Approach (PEA) with wavelet-based signal processing
to avoid the need of a mathematical model of the aircraft. A
pseudo model-based approach based on principal component
analysis (PCA) has been proposed in [29], where PCA is used
to compute residuals in the absence of a mathematical model.

Overall, it appears that the emphasis has been placed on
generic fault detection techniques, borrowing ideas from
system diagnostics. The efforts on detecting specific sensor
faults are, however, less evident. In the absence of real sensor
fault data, it may be desirable to create sufficiently high-fidelity
fault scenarios and, using them, develop more robust solutions
for sensor fault detection and disambiguation from system
faults. That will, in turn, improve confidence in the overall
system diagnostics.

V. EXPERIMENTAL SETUP

A ballscrew electromechanical actuator was used as the plant
in our experiments. The experiments were performed on a test
stand located at Moog Inc., where the test actuator (Moog Max-
Force 883-023) was connected to a hydraulic load cylinder by a
rotating horn. Control and data acquisition were performed by
real-time software running on dSPACE platform. Table II con-
tains a list of all of the sensors used on the test platform, as well
as their associated sampling frequencies.

Vibration was measured at four points on the test actuator, as
shown in Fig. 9. All three axes of vibration were measured, with
an additional measurement in the Z-direction by the accelerom-
eter mounted directly on the nut of the ball screw. Temperature
measurements were provided by a T-type thermocouple on the

TABLE II
LIST OF SENSORS

Fig. 9. Location of sensors on Moog MaxForce 883-023 actuator.

nut and an RTD embedded in the stator of the motor, as shown
in. Fig. 9. Load is sensed by a Model 75 Sensotek 50 000 lbf.
load cell. The position of the rod end of the test actuator was
measured by a Trans-Tek 0219-0000 Linear Differential Voltage
Transducer (LVDT).

LEM LA 25-P current transducers were used on each motor
phase to sense the phase currents. For data acquisition, the
Moog T200 motor drive output an analog signal representing
the torque producing current, as well as the motor velocity.

A. Tests Performed

Table III describes the types of mechanical component fault
cases introduced during the tests.

Sensor faults were injected a posteriori, as described in the
next section. Permutations of the following conditions were
used to run scenarios for each of the mechanical
component fault cases:

Motion profile: sinusoid or triangular wave.
Load type: constant or spring.
Load level: low (860 lbs spring force, 900 lbs constant force)

or high (1725 lbs spring force, 1800 lbs constant force).
For the purposes of training and testing the neural network-

based classifier (described in the subsequent sections) extended
duration scenarios were created using the collected data. These
scenarios were designed to preserve the character of the col-
lected data as much as possible, while extending the duration
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TABLE III
SEEDED MECHANICAL COMPONENT FAULT EXPERIMENTS

to 180 seconds. They contain two segments each—nominal, to
represent a healthy system before the fault occurred, and faulty
(90 seconds per segment). Since the hardware limitations of the
test stand required that the faults be seeded before the corre-
sponding experiments began, nominal data was chosen from
experiments conducted under the same conditions. The total
number of scenarios produced was 48: (8 conditions) (2 com-
ponents faults 4 sensor faults).

VI. SENSOR FAULT SIMULATIONS

Bias: in our experiments bias, injected into the nut tempera-
ture sensor data, was specified as percentage of the average base-
line temperature (80 F), calculated over the set of nominal (no
fault injected) scenarios. Gaussian noise was then introduced
into the actual amount of bias added, with a signal-to-noise ratio
(SNR) of 5 (see Fig. 10).

Drift: this fault was also injected into the nut temperature
data. The fault was defined by specifying drift velocity (distance
traveled in a certain period of time). The length of constant drift
velocity segments was randomized (maximum 1000 data points)
and Gaussian noise introduced into velocity value itself—so for
each segment the velocity may be somewhat different from its
neighbors. The SNR for the later was set to 5.

Scaling: the signal is amplified by a scaling factor, also with
Gaussian noise injected (SNR of 5).

Loss of Signal: sensor data from the point of failure replaced
by all zeros.

VII. CLASSIFIER DIAGNOSTICS SYSTEM

Taking into account the complexity of the experimental
data and the assortement of failure modes, a diagnostic system
based on ANNs was designed. A comprehensive analysis of
the data was carried out to extract a set of uncorrelated features
that would not only detect the various fault modes but also
disambiguate between sensor and system faults. Keeping this
requirement in mind, a confusion matrix was created and parti-
tioned into sections that helped to interpret results accordingly
(Table VI, described further in part C). The present section
explains the implementation details and enumerates the key
aspects of the classifier diagnostic system.

Fig. 10. Sensor fault simulations.

TABLE IV
FAULT VERSUS FEATURE MATRIX

A. Feature Extraction

Feature extraction is one of the most important steps in
building a successful (accurate and reliable) diagnostic system.
To achieve a successful practical implementation, it is desirable
that features not only be computationally inexpensive, but also
explainable in physical terms. Furthermore, they should: a) be
characterized by large between-class and small within-class
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TABLE V
CLASSIFIER INPUT FEATURES TYPES

variance; b) be fairly insensitive to external variables like noise;
and c) uncorrelated with other features. Keeping these criteria
in mind, we selected a set of seven features (Temperature
Deviation and Drift Indicator on the ballscrew nut and motor
housing thermocouples; Standard Deviation on the X, Y, and
Z accelerometers) that were expected to detect and distinguish
between a healthy system, two actuator fault modes, and four
sensor faults (see Table IV).

In addition, two extra features were designed to characterize
those experimental conditions that considerably affect sensor
measurements—load profile and axial force magnitude. Fea-
tures were calculated every half a second within a 1 s long
sliding window. Thus, for each 90 seconds long segment 180
feature points were obtained. The features are described in
Table V.

B. Diagnostic Classifier

A multicategory classifier was implemented using a three
layer ANN. The first layer consisted of nine nodes, with tan-
sigmoid transfer functions, one for each feature in the input fea-
ture vector. The hidden layer had five nodes with logsigmoid
transfer functions and the output layer had seven nodes with
logsigmoid transfer functions—one for each of the seven clas-
sification categories. All input features were continuous, real-
valued, and were standardized to have zero-mean and unit vari-
ance [33]. Binary targets were assigned such that of the seven
output bits only the correct category bit would be set 1 and the
rest would remain 0. Initial weights for the network were chosen
based on standardized input ranges in order to ensure uniform
learning [33]. Networks were trained using the resilient back-
propagation (RPROP) algorithm [34].

TABLE VI
CONFUSION MATRIX FOR TWO COMPONENT FAULTS (CF) AND

FOUR SENSOR FAULTS (SF)

C. Evaluation Procedure

Data was divided into two sets for training and testing
purposes, based on the load levels. The classifier was trained
on low load conditions ( lbs) and tested with high load
( lbs) conditions. In order to obtain a meaningful
statistic, 30 ANNs were trained and tested for each experi-
ment and the results averaged. Training was carried out for
200 epochs. Results were further aggregated in the form of a
confusion matrix (as shown in Table VI) in order to observe
the true positive (TP), false positive (FP), false negative (FN),
misclassification (MC), and nonidentification (NI) rates. NF
stands for no-fault.

As expected, it was observed that detection and disambigua-
tion performance varied with changing sensor fault magnitudes.
Therefore, sensitivity analysis was carried out to characterize
the effect of varying them. Fault parameters for drift, bias, and
scaling were adjusted one at a time over a wide range of values,
while keeping the other fault parameters fixed at predetermined
levels (derived from typical ranges available from the litera-
ture). More specifically, these predetermined values are tem-
perature bias fixed at an offset of 100% of peak-to-peak mag-
nitude, temperature drift fixed at 0.02 F/s, and scaling fixed
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TABLE VII
RANGES OF SENSOR FAULT PARAMETER VARIATION FOR

CLASSIFIER SENSITIVITY ANALYSIS

Fig. 11. Sensitivity of the classifier as drift velocity parameter changes.

at 1.5 times. The ranges of variation for these parameters are
shown in Table VII.

VIII. RESULTS AND DISCUSSION

Results were aggregated in two ways. First, performance was
evaluated in terms of sensitivity of metrics (FP, FN, MC, and
NI) from the classifier for individual sensor faults. Therefore,
if parameters for a sensor fault , were varied, the effect was
recorded only on the performance of classifier in classifying

, even though all other (system and sensor) fault modes were
also present. Second, an overall performance assessment was
made and an aggregate number was recorded for total FP, FN,
MC, and NI rates for all faults combined, as the intensity of
a single sensor fault was varied. The metrics for individual
sensor faults are defined as follows.
False Positive: Sensor fault is reported when no fault present.
False Negative: No fault reported when a sensor fault present.
Misclassification: A system fault reported when sensor fault

present or sensor fault reported when a system fault is
present.
Nonidentification: A fault detected but not identified when
sensor fault is present.

As shown in Fig. 11, the diagnostic classifier implemented
in this study is slightly sensitive to small drifts. For small drifts
it becomes difficult to disambiguate between drift fault and
nominal behavior, resulting in a higher false negative rate. The
overall detection and disambiguation performance is within 5%
FP, within 4% FN, less than 2% MC, and NI generally less than
8% except for low drift velocities where it is as high as 16%, in
some cases.

Fig. 12 shows the classifier performance for bias sensor fault.
Here, the sensitivity of the classifier can clearly be seen and at-
tributed to two factors. First, as mentioned above, for there is
a high false negative rate for low bias cases, as it is difficult
to distinguish from baseline data. Second, several fault modes
(i.e., ball jam and spall) also result in increased operating tem-
peratures, just like bias. However, since jam and spall are also

Fig. 12. Sensitivity of the classifier bias parameter changes.

Fig. 13. Sensitivity of the classifier as scaling parameter changes.

reflected in other features that do not trigger in the presence of
bias, a high nonidentification rate is also observed. In terms of
overall performance, once again, less than 4% FP and FN are ob-
served whereas NI goes as high as 18% for low values of bias.
Misclassification rate is negligible.

As expected, scaling fault detection performance deteriorates
as the scaling coefficient gets close to one (Fig. 13). For the
scaling case, the overall NI rate was observed as high as 29%
with scaling coefficients close to one. FP rates remained low
(within 5%), FN within 4%, and MC less than 1%, when com-
bined for all fault scenarios.

Therefore, it can be concluded that in this study, the overall
performance of the classifier remains consistent with low FP,
FN, and MC rates varying in the range of 0%–7%, except for
the NI rate, which becomes high in the more sensitive ranges for
all three sensor fault modes. Features are needed that are less
sensitive to fault intensity parameters. The sensitivity analysis
performed provides a useful insight into the fault classification
problem, where a classifier must be evaluated for all possible
fault scenarios and designed to provide a more robust diagnosis.

IX. PLANS FOR FUTURE WORK

There is a number of possible avenues for future work on
this topic. First, the set of sensors needs to be widened from
the current set taken from a fairly narrow application domain.
Additional fault modes need to be considered as well. While
we have constrained this investigation to faults occurring
within the sensors themselves, a large number of sensor-related
faults are due to data acquisition circuitry (analog-to-digital
converters, signal conditioning), electrical systems supporting
sensor operation (power supplies), and other sources. Moreover,
some sensor fault types, such as intermittencies, should be the
subject of a closer examination, since they are responsible for
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a large number of problems in fielded systems. A number of
physics model-based and probabilistic approaches is currently
being considered for handling intermittent faults. One them
is a model-based, finite-state diagnostic system which will
either supplement or incorporate the current neural network
reasoner. Such a model-based system would be based on a state
machine where each state node describes a particular nominal
or fault mode via a set of equations and constraints. Transitions
between the modes can be conditionalized as well. Once the
neural network component detects a fault condition and the
state machine is transitioned into the appropriate mode, the
subsequent indications are checked to decide whether the mode
should be exited in favor of a different one. The time spent
in various fault modes (as well as the time spent in between
reentering the same fault mode) can be reported to determine
the degree of fault intermittency.

While in this work we studied a classifier system that dis-
tinguished between sensor faults and system faults, it should
be investigated how such classifiers (or reasoners) can be
scaled to deal with large systems. This can be accomplished
by a system-of-systems approach, by developing sensor fault
tolerant schemes, or by modeling explicit or implicit function
or analytical redundancies. While the features described herein
focused mostly on the time domain, other features (e.g. fre-
quency-domain) should be considered. In practice, sensor fault
detection should go hand-in-hand with accommodation strate-
gies. The understanding gained in the underlying mechanisms
of sensor faults should be tapped into when considering new
techniques for sensor fault accommodation and will hopefully
aid in making system health management a more viable tech-
nology overall.

Another avenue for future work is verification of sensor fault
models developed. Experiments with seeded faults should be
conducted on realistic systems to confirm that the models be-
have correctly. To that end, plans are under way to carry out
sensor fault experiments on the new actuator test stand at NASA
Ames by inducing certain types of faults in the sensors and ob-
serving their signatures while the system operates under a va-
riety of load conditions. Among other objectives, the stand will
aid in diagnostic and prognostic work for position measurement
devices, such as LVDTs and resolvers/encoders, as one of its key
features is an external, high-precision laser-triangulation posi-
tion sensor.

X. CONCLUSION

This paper examined the physical underpinnings of sensor
faults and mapped them to five general categories. The ultimate
goal was to enable better systems health management by pro-
viding an insight into behavior of faulty sensors (as opposed
to treating them as black boxes) which, in turn, might lead to
improved fault accommodation strategies. In that spirit, a fault
detector/classifier has been demonstrated that successfully han-
dles the set of faults for a wide range of fault parameters. A
large part of the work was devoted to sensitivity analysis of
the classifier to variations of these parameters and identification
of regions where suboptimal classification results could occur.
The approach utilized for the analysis may suggest a general

methodology for developing and testing diagnostic systems suit-
able for a wider range of sensor faults. A comprehensive anal-
ysis of the physical causes of sensor faults will also contribute to
improved robustness of system health management reasoners.
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